__STDOUT LOG__
Job runs on fgcz-h-901
at /scratch/o5495_o5444_ScSeuratCombine_2024-12-06--16-23-35_temp1905051
Starting EzAppScSeuratCombine SCReportMultipleSamplesSeurat o5495_o5444_ScSeuratCombine_2024-12-06--16-23-35_temp1905051 2024-12-06 16:23:44
[1] 1
[1] 2
__STDERR LOG__
Loading required package: data.table
Loading required package: Biostrings
Loading required package: BiocGenerics
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, aperm, append, as.data.frame, basename, cbind,
colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Loading required package: stats4
Attaching package: ‘S4Vectors’
The following objects are masked from ‘package:data.table’:
first, second
The following object is masked from ‘package:utils’:
findMatches
The following objects are masked from ‘package:base’:
expand.grid, I, unname
Loading required package: IRanges
Attaching package: ‘IRanges’
The following object is masked from ‘package:data.table’:
shift
Loading required package: XVector
Loading required package: GenomeInfoDb
Attaching package: ‘Biostrings’
The following object is masked from ‘package:base’:
strsplit
Loading required package: GenomicRanges
Loading required package: tidyverse
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ lubridate::%within%() masks IRanges::%within%()
✖ dplyr::between() masks data.table::between()
✖ dplyr::collapse() masks Biostrings::collapse(), IRanges::collapse()
✖ dplyr::combine() masks BiocGenerics::combine()
✖ purrr::compact() masks XVector::compact()
✖ dplyr::desc() masks IRanges::desc()
✖ tidyr::expand() masks S4Vectors::expand()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::first() masks S4Vectors::first(), data.table::first()
✖ lubridate::hour() masks data.table::hour()
✖ lubridate::isoweek() masks data.table::isoweek()
✖ dplyr::lag() masks stats::lag()
✖ dplyr::last() masks data.table::last()
✖ lubridate::mday() masks data.table::mday()
✖ lubridate::minute() masks data.table::minute()
✖ lubridate::month() masks data.table::month()
✖ ggplot2::Position() masks BiocGenerics::Position(), base::Position()
✖ lubridate::quarter() masks data.table::quarter()
✖ purrr::reduce() masks GenomicRanges::reduce(), IRanges::reduce()
✖ dplyr::rename() masks S4Vectors::rename()
✖ lubridate::second() masks S4Vectors::second(), data.table::second()
✖ lubridate::second<-() masks S4Vectors::second<-()
✖ dplyr::slice() masks XVector::slice(), IRanges::slice()
✖ purrr::transpose() masks data.table::transpose()
✖ lubridate::wday() masks data.table::wday()
✖ lubridate::week() masks data.table::week()
✖ lubridate::yday() masks data.table::yday()
✖ lubridate::year() masks data.table::year()
ℹ Use the conflicted package () to force all conflicts to become errors
unknown param: partition
unknown param: tissue
unknown param: SingleR
unknown param: additionalFactors
unknown param: STACASAnnotationFile
unknown param: sushi_app
unknown param: isLastJob
Loading required package: SeuratObject
Loading required package: sp
Attaching package: ‘sp’
The following object is masked from ‘package:IRanges’:
%over%
Attaching package: ‘SeuratObject’
The following object is masked from ‘package:GenomicRanges’:
intersect
The following object is masked from ‘package:Biostrings’:
intersect
The following object is masked from ‘package:GenomeInfoDb’:
intersect
The following object is masked from ‘package:IRanges’:
intersect
The following object is masked from ‘package:S4Vectors’:
intersect
The following object is masked from ‘package:BiocGenerics’:
intersect
The following objects are masked from ‘package:base’:
intersect, t
Attaching package: ‘Seurat’
The following object is masked from ‘package:ezRun’:
SingleCorPlot
Attaching package: ‘rlist’
The following object is masked from ‘package:S4Vectors’:
List
Loading required package: DelayedArray
Loading required package: Matrix
Attaching package: ‘Matrix’
The following objects are masked from ‘package:tidyr’:
expand, pack, unpack
The following object is masked from ‘package:S4Vectors’:
expand
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: ‘matrixStats’
The following object is masked from ‘package:dplyr’:
count
Attaching package: ‘MatrixGenerics’
The following objects are masked from ‘package:matrixStats’:
colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
colWeightedMeans, colWeightedMedians, colWeightedSds,
colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
rowWeightedSds, rowWeightedVars
Loading required package: S4Arrays
Loading required package: abind
Attaching package: ‘S4Arrays’
The following object is masked from ‘package:abind’:
abind
The following object is masked from ‘package:base’:
rowsum
Loading required package: SparseArray
Attaching package: ‘DelayedArray’
The following object is masked from ‘package:purrr’:
simplify
The following objects are masked from ‘package:base’:
apply, scale, sweep
Loading required package: rhdf5
Attaching package: ‘HDF5Array’
The following object is masked from ‘package:rhdf5’:
h5ls
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: ‘Biobase’
The following object is masked from ‘package:SparseArray’:
rowMedians
The following object is masked from ‘package:MatrixGenerics’:
rowMedians
The following objects are masked from ‘package:matrixStats’:
anyMissing, rowMedians
Attaching package: ‘SummarizedExperiment’
The following object is masked from ‘package:Seurat’:
Assays
The following object is masked from ‘package:SeuratObject’:
Assays
Welcome to enrichR
Checking connection ...
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is Live!
WormEnrichr ... Connection is Live!
YeastEnrichr ... Connection is Live!
FishEnrichr ... Connection is Live!
OxEnrichr ... Connection is Live!
Attaching package: ‘decoupleR’
The following object is masked from ‘package:data.table’:
:=
Registered S3 method overwritten by 'SeuratDisk':
method from
as.sparse.H5Group Seurat
Attaching shinyBS
Running SCTransform on assay: RNA
Running SCTransform on layer: counts
vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
Variance stabilizing transformation of count matrix of size 16028 by 5446
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 5000 cells
Found 58 outliers - those will be ignored in fitting/regularization step
Second step: Get residuals using fitted parameters for 16028 genes
Computing corrected count matrix for 16028 genes
Calculating gene attributes
Wall clock passed: Time difference of 26.47173 secs
Determine variable features
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Getting residuals for block 1(of 2) for counts dataset
Getting residuals for block 2(of 2) for counts dataset
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Finished calculating residuals for counts
Set default assay to SCT
Running SCTransform on assay: RNA
Running SCTransform on layer: counts
vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
Variance stabilizing transformation of count matrix of size 16759 by 9298
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 5000 cells
Found 177 outliers - those will be ignored in fitting/regularization step
Second step: Get residuals using fitted parameters for 16759 genes
Computing corrected count matrix for 16759 genes
Calculating gene attributes
Wall clock passed: Time difference of 31.42528 secs
Determine variable features
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Getting residuals for block 1(of 2) for counts dataset
Getting residuals for block 2(of 2) for counts dataset
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Finished calculating residuals for counts
Set default assay to SCT
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
16:28:59 UMAP embedding parameters a = 0.9922 b = 1.112
16:28:59 Read 14744 rows and found 30 numeric columns
16:28:59 Using Annoy for neighbor search, n_neighbors = 30
16:28:59 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
16:29:01 Writing NN index file to temp file /tmp/RtmpzofK0w/file1d11b413072962
16:29:01 Searching Annoy index using 1 thread, search_k = 3000
16:29:07 Annoy recall = 100%
16:29:08 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
16:29:12 Initializing from normalized Laplacian + noise (using RSpectra)
16:29:12 Commencing optimization for 200 epochs, with 610890 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
16:29:19 Optimization finished
Running SCTransform on assay: RNA
Running SCTransform on layer: counts
vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
Variance stabilizing transformation of count matrix of size 16028 by 5446
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 5000 cells
Found 58 outliers - those will be ignored in fitting/regularization step
Second step: Get residuals using fitted parameters for 16028 genes
Computing corrected count matrix for 16028 genes
Calculating gene attributes
Wall clock passed: Time difference of 22.78392 secs
Determine variable features
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Getting residuals for block 1(of 2) for counts dataset
Getting residuals for block 2(of 2) for counts dataset
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Finished calculating residuals for counts
Set default assay to SCT
Running SCTransform on assay: RNA
Running SCTransform on layer: counts
vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
Variance stabilizing transformation of count matrix of size 16759 by 9298
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 5000 cells
Found 177 outliers - those will be ignored in fitting/regularization step
Second step: Get residuals using fitted parameters for 16759 genes
Computing corrected count matrix for 16759 genes
Calculating gene attributes
Wall clock passed: Time difference of 30.98981 secs
Determine variable features
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Getting residuals for block 1(of 2) for counts dataset
Getting residuals for block 2(of 2) for counts dataset
Centering data matrix
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Finished calculating residuals for counts
Set default assay to SCT
Centering and scaling data matrix
|
| | 0%
|
|======================= | 33%
|
|=============================================== | 67%
|
|======================================================================| 100%
Centering and scaling data matrix
|
| | 0%
|
|======================= | 33%
|
|=============================================== | 67%
|
|======================================================================| 100%
PC_ 1
Positive: FTH1, SAT1, TPT1, SERF2, CD24, NDRG1, C4orf3, CLDN1, CCND2, HIF1A
MXD4, SH3BGRL3, SELENOW, RPL39, PERP, CTSB, GUK1, BRI3, TUBA1A, SHC1
TMSB4X, ATP5F1E, RPS28, OST4, ALOX15B, KLF6, PLOD2, ERO1A, RPL37A, FOLR3
Negative: PTMA, TUBA1B, HMGB1, H2AZ1, TUBB4B, HSP90AA1, NPM1, NASP, HMGN2, STMN1
DEK, RRM2, RANBP1, BIRC5, EIF4A1, PA2G4, SNRPB, TUBA1C, HSPD1, SNRPD1
PRMT1, PTTG1, NCL, HSP90AB1, HMGA1, CDC20, SERBP1, MCM7, FGFBP1, LDHB
PC_ 2
Positive: TANC2, EHBP1, ADK, EXOC4, THSD4, EXOC6B, TRIO, SMYD3, EXT1, PTPRK
HMGA2, LPP, PARD3, ARHGEF28, RASAL2, PSD3, EIF4G3, PTPRG, JMJD1C, RBMS3
SBF2, PATJ, RAD51B, FRMD6, MICAL2, FRMD4B, MACF1, ENSG00000284906, EGFR, ERC1
Negative: RPS27A, RPL8, GAPDH, LDHA, RPL32, RPS23, RPS12, RPL29, RPL26, RPLP1
RPL28, RPL41, MIF, RPS28, DYNLL1, RPS14, RPS3, RPL12, RPL39, RPL34
RPL10, RPL13, RPS18, MT1X, RPS3A, UBB, RPS19, GSTP1, HSPA8, LCN2
PC_ 3
Positive: TOP2A, PLK1, UBE2C, CENPF, GTSE1, MKI67, AURKA, TPX2, ASPM, RPL41
UBE2S, HES4, HMMR, TACC3, AURKB, ARL6IP1, CENPE, KIF2C, CCNF, CDCA8
CENPA, CCNA2, CDK1, FAM83D, HES2, NOTCH3, CAMK2N1, KIF23, NDC80, KIF14
Negative: KRT19, ANXA2, MYL6, S100A2, S100A11, MGST3, G0S2, EMP3, NDUFA13, MT-RNR2
IFITM3, PRDX1, MYL12B, BLVRB, GSTP1, CAVIN3, KRT5, MT-CO3, PKM, PFN1
MT-ATP6, PSMB6, CD63, GSTO1, IFITM2, ATP5MC3, CLIC1, TIMP1, PRDX5, MT2A
PC_ 4
Positive: MT2A, G0S2, MT1E, ITGB1, SPHK1, PLOD2, NT5E, IL1A, LAMC2, TUBB
RAI14, PRR11, TGFBR2, ACTG1, SMURF2, CYGB, CXCL1, CAVIN1, LTBP2, AREG
FN1, ICAM1, C12orf75, DKK3, AXL, LAMB3, RPL41, MAP1B, PTGS2, CSF3
Negative: SPRR1B, KRT16, KRT14, PPL, KRT17, SLPI, S100A9, ADIRF, RHCG, S100A8
TGM1, SPRR2D, KRT19, HSPB1, KLK10, S100A6, AQP3, PI3, A2ML1, NCCRP1
GSTP1, SULT2B1, SPRR2A, KLK5, TMEM45B, KRT6A, S100A11, S100A14, CRABP2, NOTCH3
PC_ 5
Positive: S100A11, LGALS1, GSTP1, MYL6, BST2, TNNT1, ANXA2, ACTB, S100A10, UBE2C
PRDX5, FAM83D, AURKA, HSPB1, SFN, KRT19, PFN1, PLK1, TXNDC17, PKM
GSTM3, VIM, TOP2A, KIF23, TMSB10, PIF1, HSPA1A, SGO2, CKS2, KPNA2
Negative: SLC16A3, KRT7, CDH13, TPM2, ME1, GPX3, LRMDA, LAPTM4B, PRXL2A, FARP1
RAB32, FTL, F12, IRAK3, C3orf14, CDH11, FKBP10, LDAH, CITED4, CRIP2
CXCL1, MCM3, POLA1, SLBP, ASAP1, WDR76, ANGPTL4, MYO5C, SPAG16, PRKCA
PC_ 1
Positive: S100A2, LGALS1, IGFBP7, COL17A1, ITGB4, FRMD6, MT2A, TINAGL1, FHOD3, ITGA3
FLNA, TENM2, CALD1, VIM, PSAP, PMEPA1, FBXO32, FAP, LAMC2, ITGB6
CTSH, CAV1, CD44, IGFBP2, SFN, ACTN1, PTHLH, MIF, KRT6A, FN1
Negative: SLC6A14, MUC4, WFDC2, S100P, CXCL17, CSTB, MUC20, ELF3, DHRS9, LCN2
AGR2, MUC1, RDH10, INSR, SAT1, VMO1, RARRES1, CLDN7, ATP1B1, IDO1
CEACAM6, B4GALT5, MYEOV, GOLM1, PRSS22, FAM83A, PSCA, PLEKHG7, TMC5, SLC44A4
PC_ 2
Positive: S100A9, GAPDH, PRDX2, KRT19, ID1, SERPINA3, NDUFA13, S100A8, CD63, S100A11
IFITM3, LDHB, SLPI, PRDX1, H3-3A, UBB, EIF4A1, MT1X, PPIB, RPL8
SAA1, PRDX5, TIMP1, CTSC, CTSD, NPC2, SAA2, CYBA, HSD17B2, PSMB1
Negative: TRIO, MGAM, KLF6, LPP, PTPRK, HDAC9, INPP4B, SAMD4A, TPM4, MICAL2
UBE2H, INHBA, VCL, MAP1B, MYO1E, MYH9, RND3, ARHGEF28, RABGAP1L, MAN2A1
MACF1, NAV2, DSG2, PHACTR4, THSD4, IFFO2, PALLD, PALM2AKAP2, TANC2, CCN2
PC_ 3
Positive: TMSB10, CD24, SELENOW, PFN1, SERF2, ATP5F1E, INHBA, COL1A1, CLTB, MGAM
TAGLN, ACTB, FOLR3, KLF6, JPT1, SERPINE1, DYNLL1, IL32, C4orf48, S100A10
GUK1, ATP5MK, EIF4EBP1, SPHK1, SH3BGRL3, ADAMTS6, FSTL3, TPM1, OCIAD2, MYL6
Negative: ANK3, DPYD, CPD, ID1, NFIA, PBX1, MECOM, EFNA5, KIAA1217, PTCHD4
EYA2, GMDS, CYP1B1, AIG1, AKR1C2, MEIS2, ADD3, S100A9, SEMA4B, HSD17B2
LRMDA, CAMK1D, CP, TNS3, TSHZ2, EXOC4, PDE4D, MFSD1, GLI3, ARHGAP24
PC_ 4
Positive: RPS28, RPL39, RPS12, RPL41, RPL34, RPS8, RPL10, MT-ND3, RPL28, RPL12
RPS27A, MT-CO2, TPT1, RPS23, RPS14, RPL26, RPLP1, RNF145, RPS3, EEF1A1
FTL, RPL23, RPS18, RPL32, RPL37A, FTH1, TOMM7, GPX2, RPL13, SELENOW
Negative: MYL6, UBC, KRT19, ANXA2, KRT17, CD63, TUBB4B, PRDX1, NDUFA13, EIF4A1
MYL12B, TUBA1B, KRT18, PRDX2, KRT8, SERPINB6, CYBA, CLIC1, PSMB3, TUBA1C
PSMB6, EIF6, HSP90AB1, PPIB, PSMB1, S100A11, TUBA1A, IER3, PSMD8, HSP90AA1
PC_ 5
Positive: RHCG, CDA, CTSC, MT1X, S100A4, HES2, SPRR1B, ABCA1, FTH1, PI3
IL1B, RPL41, SERPINB4, S100A8, S100A6, SPRR2A, KYNU, RPL34, KRT16, RPL39
SPRR2D, CXCL2, RAB31, IL1R1, S100A10, TOMM7, PGLYRP4, CXCL8, CSF3, SERPINB13
Negative: MT-RNR2, MT-ATP6, MT-ND4, MT-RNR1, HLA-A, HLA-C, MT-ND1, RAMP1, MT-CO1, MT-CO3
MT-CYB, KRT8, KRT7, TUBB4B, MT-ND5, TPM2, GRN, B2M, TPM4, UBC
TUBA1B, MT-CO2, KRT18, MT-ND6, HLA-B, CTSD, SLC16A3, ASRGL1, ACTB, HSP90AA1
Computing within dataset neighborhoods
Finding all pairwise anchors
Projecting new data onto SVD
Projecting new data onto SVD
Finding neighborhoods
Finding anchors
Found 7277 anchors
Warning: Layer counts isn't present in the assay object; returning NULL
Warning: Layer counts isn't present in the assay object; returning NULL
Merging dataset 1 into 2
Extracting anchors for merged samples
Finding integration vectors
Finding integration vector weights
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Integrating data
Warning: Layer counts isn't present in the assay object; returning NULL
Warning: Assay integrated changing from Assay to SCTAssay
Warning: Layer counts isn't present in the assay object; returning NULL
16:34:20 UMAP embedding parameters a = 0.9922 b = 1.112
16:34:20 Read 14744 rows and found 30 numeric columns
16:34:20 Using Annoy for neighbor search, n_neighbors = 30
16:34:20 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
16:34:22 Writing NN index file to temp file /tmp/RtmpzofK0w/file1d11b46e1dc8e1
16:34:22 Searching Annoy index using 1 thread, search_k = 3000
16:34:28 Annoy recall = 100%
16:34:29 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
16:34:33 Initializing from normalized Laplacian + noise (using RSpectra)
16:34:33 Commencing optimization for 200 epochs, with 626248 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
16:34:40 Optimization finished
Found 2 SCT models. Recorrecting SCT counts using minimum median counts: 16811.5
Calculating cluster 0
/var/spool/slurmd/job11918/slurm_script: line 67: 1905076 Killed R --vanilla --slave <